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NOTE

Spherical Bessel Transforms

A method for the calculation of spherical Bessel transforms is
presented which requires the evaluation of two numerical integrals, one
of which is a fast Fourier (sine} transform, without the explicit use of
the Bessel functions. With emphasis on transforms of relatively high
order, the procedure is shown to have a practical and accurate applica-
tion in the calculation of radial momentum-space wave functians from
the corresponding position-space functions. Examples used are high
angular momentum states of the hydrogen atom and rovibrational
states of the diatomic molecule RbCs. & 1993 Academic Press. Inc.

L. INTRODUCTION

Computational methods for cvaluating integral (rans-
forms are required in o varicty of applications in chemistry,
physics, and engineering |17 In this contribution to the
subject, we are concerned with the problem of computing
radial momentum-space wave functions lor central poten-
tials through the spherical Bessel transform of the corre-
sponding function obtained by solving the appropriate
radial Schroedinger equation in position space. The need for
fast, efficient, and accurate algorithms for this purpose
has arisen, for example, in the description of atomic and
molecular stationary states in momentum space [2] and in
the larger problem of simulating wave-packet propagation
on potential surfaces [3]. Notable among the existing
mcthods is that of Talman {4 ]. which converts the problem
to the evaluation of two Fourier transforms by use of
logarithmic spatial and momentum variables. It is therefore
restricted Lo applications where such grids are suitable; it is
not recommended for very oscillatory functions, and it
appecars to be most useful for transforms of low order.
{Thesc conditions are usvally met in alomic structure cal-
culations.) Other specialized methods have been presented
by Sommer and Zabolitsky [57 and by Puoskari [6]. Our
approach was developed as part of an investigation of the
momentum-space characteristics of rovibrational states and
Franck-Condon transitions of dialomic molecules [7. 8],
for which lincar grids are appropriate and transforms of
relatively high order are sometimes needed. As outlined
below, the method is closely related to one used by Sun
et al. 19] in close coupling-wave packet calculations on
atom-diatom collisions, but it 1s different in essential details.
The lollowing section shows how thé problem of gencrating
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the spherical Bessel functions and the associated integral
transform is replaced by two numerical integrals, one of
which is amenable to FFT methods and the other requires
some straightforward complex aigebra and a standard
quadrature formula. The remaining section presents some
numerical examples of high-order transforms for large
angular momentum states of the hydrogen atom and the
molecnic RbCs, followed by a short discussion.

2. METHOD

The radial wave functions of a central potential in
position and momentum spaces, R, ,(r) and R, (p), are
related by the spherical Bessel transform

ﬁmdn)=(2ﬁﬂn”z£T(pdh)ﬁ(Pdﬁ)RmAHr# (1)

and the analogous inverse relation, where j,(z)=
(n/2z)'"* J,, \.2(2) is the spherical Bessel function of order /
(the angular momentum quantum number of the state)
[8]. Similar to the procedure of Ref. [97], the first step
of the method is insertion of upity in the form
(prihy e~ """ pril) ! "™ into the integrand of Eq. (1),
such that

Ro(py=h"2 [ [orfh)* 2 e =g, o prfh)]
O

x [(prih)~" xR, (r)] dr (2)
where  is a dimensionless parameter; followed by definition

of two functions of a dimensionless transform variable x,
A/ (x)and B, ,(x, p), through the relations

(prihy 12 o=, prih)

- L sin(xprh) 4,(x) dx (3)
and
(prih) TR, (1)
— (2p/nh'?) J: sin(xpr/h) B, (x, p)dx.  (4)
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Inversion of Eqs. (3) and (4) with aid of the relation

Im sin{xpr/fi) sin(x'pr/h) dr = (nh{2p) d{x—x")  (5)
0
gives
AL(x) = (2pih) [ sin(xprfh) prih)/ =+
]
x ey, sl prifty dr {6)
=(2/aY¥? 2N Im[(A+x)(3*—x)]~“*Y, ()

where =1+ iz and

Bl p)=h™" [ sinCxpr/h prih) " e R, (7).
(®)

The analytical form expressed by (Eq. (7) was derived with
the help of an integral discussed by Watson [10].

In terms of the functions A,(x) and B, ,(x, p), the spheri-
cal Bessel transform expressed by Eq. (1) is given by

Rop)= [ 4,(x) B, p) dx. 9)

While the notation used in this work is appropriate for
transformations of radial wave functions between position
and momentum spaces, the procedure is applicable to any
spherical Bessel function transform, given that various
forms of the integrals can be written by factoring powers of
the transform variables from the integrands. Equation (3)is
the working relation of our method, but it is also worth
noting the equivalent form

R, (p)=(2ny? 2~ Im

+ @ Bn_',(x’ P}
xj_do [(i-}-_\;)[)_*_x)},_,,ldx, (10)

which we have found useful for deriving the transforms of
elementary functions via the residue theorem.

A Fortran program was written using the FFT aigo-
rithms of Ref [11] for the evaluation of Eq. (8) and
Simpson’s {-rule for the evaluation of Eq. (9). For a given
value of the momentum, the FFT returns the values
B, (x4, p) at the points

x, =k(n/pN dr) (11)
fork=1,2, .., N, where N (a power of 2) is the order of the
FFT and Jr is the interval on the linear grid of the spatial
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function (r,=ro + jor, with j=0, 1, ..., N,). Zero-filling was
used to extend a function being transformed if its tabulated
values have decayed to zero and N, < N. As the above rela-
tions indicate, the approximate quadrature of Eq. (9)
requires a grid-size dx =n/pN ér and the calculation of the
quantities A,(x;} at the grid points. The choice of the
parameter « is an ambiguous step in implementing the
method, and it was made by trial-and-error. This was not
difficult because a particular calculation was reproduced
with a range of values, but it was usually not possible to
span the full range of a transformed function with the same
value.

For comparison, a second Fortran program was written
which calculates R, () directly from Eq. {1) by Simpson’s
1-rule, with the spherical Bessel functions generated by the
standard method of backwards iteration of the recurrence
relation [12]. Calculations were very time-consuming by
this method if the program called a subroutine to give j,(z)
with arbitrary order and argument, so we used a procedure
which presupposes a uniform sequence of arguments
z;=1dz with i=1,2,.., M. Beginning with z,,/j, is
calculated by iterating backwards, using orders /+ 1 and
I+ 2 and, again, using orders {+2 and /4 3. If the two
results differ within a specified tolerance, then the procedure
is continued until the required accuracy is obtained on com-
paring the results using orders {+m—1 and /+m, and
I+ and I+ m+ 1. In general, the value of m that passes
the tolerance test at one point in the sequence is passed on
to begin the backwards recurrence at the next point. The
efficiency of this scheme is reflected in the slow increase of m
across the sequence.

3. NUMERICAL EXAMPLES AND DISCUSSION

As a simple test of the above method, we used it to
calculate the momentum-space wave function for the state
of the hydrogen atom with the highest angular momentum
(/= n— 1) within a particular level in its spectrum, for which
[13] {atomic units have been used in all examples)

_ (2rin)” —t/n
R"‘"fl(r)nn[(Zn’I)f]”z (12)
and
Rpwe(p)= (22— 17t =2V 13y

CLE (2t

The function B, ,_,(x, p) derived from Egs. (8) and (12)
can be shown by elementary methods to be given by the
expression

(2/npy" ™! (1/np—o)x

Bn,n—i(x: P): [(Zn_ 1)!]1[2 [(l/np_a)z_*_xl]Z'

(14)
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TABLE 1
Test on /=n— ! States of the Hydrogen Atom

Relative error

" o ar N, N

20 0 25 60 64 185(—4)

20 0 25 60 128 1.48( —12)

40 il 75 70 128 2.40{—12)

&0 ] 125 80 128 3.93(—12)

80 3000 175 90 128 361(—12)
100 7000 250 100 128 3.65(—11)
100 7000 250 100 256 223(—11})
100 T000 250 100 512 5.75( —11)

It is worth noting that Eq. (13) is obtained from Egs. (10)
and (14} by determining the residue of a single pole of order
2 at z=i{1/np — a) arising from B, ,_(z, p). The poles of
order n arising from A4, _,(x) can be avoided.

Results for calculations at p,,, =[n(z+2)]7"", the
momentum at the peak of B, _,(p), are given in Table 1. It
was found to be necessary to make « depend on momentum,
with the form o = ¢/np and ¢ = 0.80 giving good results. The
relative error is with respect to the exact value given by
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FIG. 1. Position and momentum radial wave functions for rovibra-
tional states of X'X* RbCs: {a) statec n=10, /=40; (b} state n=152,
/= 104. The calculations listed in Table 1I correspond to the peaks marked
with asterisks.
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Eq. (13) and the figure in brackets is an exponent of 10.
Calculations of accuracy comparable to the 128-point trans-
form were obtained by the direct method with very similar
cpu requirements. Table I illustrates the viability of the
alternate method for high-order transforms of relatively
simple functions.

A much more demanding test of the method was con-
ducted by calculating the momentum-space wave functions
for various rovibrational states of the diatomic molecule
{(RbCs. The functions R, ,(r) were obtained by Numerov
integration of the radial Schroedinger equation [§] using
Rydberg-Klein-Rees (RKR) potentials for several elec-
tronic states of this melecule [14]. Figure 1 and Table II
illustrate some calculations on the (n=10, /=40) and
{(n=7352, I =104) states of the ground electronic configura-
tion, which arc exhibited simply to demonstrate the
capabilities of the method. The latter is the final state of a
prominant line in the laser-induced fluorescence spectrum
from an excited '#7 electronic configuration [ 14]. The main
result of this test is that the 4096-point transform is
comparable to the direct method in speed and accuracy for
functions of the degree of complexity illustrated in the
figure.

TABLE 1I
Test on Rovibrational States of the RbCs Molecule

nooL b p 2 N R..p)

10 40 001 4460 200 1024 (1.3264665071
10 40 001 460 2.00 2048 0.3263464483
10 40 001 4.60 2.00 4096 0.3262864768
10 40 001 4.60 2.00 8192 0.3262864768
10 40 001  4.60 Direct method (.3262864764
10 40 Q01 46 0.50 1024  —0.3927153898
10 40 001 46 0.50 2048 —0.3924207248
10 40 001 146 0.50 4096  —0.3923763821
10 40 001 146 0.50 8192 —0.3923763821
10 40 001 146  Direct method --0.3923763820
10 40 001 246 (.30 1024 0.06597106988
10 40 001 246 0.30 2048 0.06597616904
10 40 001 2456 0.30 4096 0.06597641777
10 40 001 2406 0.30 3192 0.06597641777
10 40 00t 246  Direct method 0.06597641753
52 14 001 920 2.00 2048 —10x W0¢

52 104 001 920 2.00 4096 0.3350849297
52 104 001 920 200 8192 0.3390849296
52 104 001 920 Direct method 0.3350849290
52 104 001 304 0.50 2048 —11.6

52 16d 001 304 0.50 4096 0.26004771358
52 104 001 304 0.50 8192 02600477135
52 104 001 304  Direct method 0.2600477140
52 104 001 444 0.30 2048 0.3728258015
52 104 001 444 0.30 4096 03733731879
52 104 001 444 0.30 8162 0.3733731879
52 104 001 444  Direct method 0.3733731375
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The main condition for obtaining an accurate result is
that dx = n/pN ér must be small enough, and it is interesting
to note that increasing N beyond what is needed to ensure
that this is the case does not improve the accuracy. This
relation also suggests, and the data in Table II show, that
the accuracy of a transform of lower N improves with
increasing momentum,

In summary, the results presented above show that the
FFT-based procedure for computing spherical Bessel trans-
forms, without the explicit calculation of the Bessel func-
tions, is a stable, efficient, and accurate algorithm applicable
to both simple and highly oscillatory functions and to trans-
forms of high order. This new scheme is practical and easy
to program, and our current implementation of it is com-
parable in most respects to the method based on backwards
recurrence if the latter is programmed efliciently. We have
shown that a good way to do this is to pass on the order of
the Bessel function needed to initiate the recurrence from
on¢ point on the integration grid to the next. The two
methods are then similar in their cpu requirements, but the
FFT-based methed includes the parameter «, the choice of
which, although not difficult, is an added complication.
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